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Strength of Materials



Overview

O In strength of materials, we are
looking for basic stresses induced In
structural members due to loading,
and the resulting deflections.

o Using derived equations, a close
approximation of the stress level and
deflections in the member can be
found and compared with allowed
values.



Outline

o Direct Stresses
> Normal
> Shear

O Torsional Stresses
O Bending Stresses
O Pressure Vessels

o Combined Stresses
o Columns



Outline (continued)

O Deflections
o Axial deformations
o Torsional deformations
o Beam deflections



Direct Stresses

o Tension and Compression stresses

>where{ = P/A - stretching and
squashing parallel to load and long
axis of member.

o Shear stresses

O whereT= P/A - shear stresses - wiping
stresses - cross-shear on bolts,
stresses in web of beam - stresses
across the long axis of the member.
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Longitudinal Deflections of
Members

> &1aq = PL/AE where

P is the axial load
L is the length of the member
A is the cross-sectional area
E is the modulus of elasticity
O 6 temp =X AT L where
& is the coefficient of thermal expansion
and A\Tis the change in temperature
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UNIAXIAL STRESS-STRAIN
Stress-Strain Curve For Mild Steel
¢
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The slope of the linear portion of the curve equals the
modulus of elasticity.

HOOKE'S LAW o = Ee, where

o = stress (force per unit area),
E = modulus of elasticity (force per unit area), and
€ = strain (change in length per original length).



ENGINEERING STRAIN € = AL/L,, where |4

€
AL

m
ol

pl
6-el =

engineering strain (units per unit),
change in length (units) of member,
original length (units) of member,
plastic deformation (permanent), and
elastic deformation (recoverable).

Equilibrium requirements: ZF = 0; I M = 0

Determine geometric compatibility with the restraints.
Use a linear force-deformation relationship;

F = Fé.



Uniaxial Loading and Deformation
o = P/A, where

stress on the cross section,
loading, and

cross-sectional area.
€ = O0/L, where

axial deformation and
length of member.
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THERMAL DEFORMATIONS
6, = aL(t-t), where

5, = deformation caused by a change in tempera-
ture,

temperature coefficient of expansion,

length of member,

final temperature, and

initial temperature.
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Shear Stress-Strain / 8
y = 1/G, where

y = shear strain,
7 = shear stress, and
G = shear modulus (constant in linear force-defor-
mation relationship).
G = E , where
2(1 + v)
v = Poisson's ratio,

— (lateral strain)/(longitudinal strain).



MATERIAL PROPERTIES

Quantity Symbol Value Units
modulus of elasticity, steel metric E, 2.1x10" Pa
modulus of elasticity, aluminum metric E, 6.9 x10"° Pa
modulus of elasticity, steel USCS E, 30 x10° psi
modulus of elasticity, aluminum USCS E, 10 x10° psi
shear modulus, steel metric G, 8.3x10% Pa
shear modulus, aluminum metric G, 2.8 x10% Pa
shear modulus, steel USCS G, 12x10° psi
shear modulus, aluminum USCS G, 4x10° psi
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Strain--General Case

e, = (/B)g, - v(o, + 0,)]

e, = (UB)o, - v(g, + 0]

e, = (/B)o,-v(o, + 0)]
Tx

yxy - ﬁl

sz = TGyZ

.
Ve = é’ﬁ, where

€ €, €, = normal strain,
J., 0,, 0, = normal stress,
Yxy» ¥yz» Y2x = shear strain,
T..» T,,, T,. = shear stress,

G
v

xy? "yz? "2x

modulus of elasticity,
shear modulus, and
Poisson's ratio.
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Torsional Stresses
A~
O = Tr/J
_where T is the shear stress
—T is the applied torque
—r Is the outer radius of the bar

—J = TF( outer mner) /2 < PG Zé)

—Shear stress is across the end face of
the bar, a maximum on the outside

fiber, and zero at the center of the bar.

The equation applies only to circular
rods and pipes.
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Ygr = 1&1}38 r(Ag/Az) = r(d¢/dz) £2

The shear strain varies in direct proportion to the ra-
dius, from no strain at the center to a greatest strain
at the outside of a circular shaft. d¢/dz is the twist
per unit length or the rate of twist.

Ty. = Gyy, = Gr(dg/dz)
T = G(d¢/dz)[4r2dA = GJ(d¢/dz),

where
J = polar moment of inertia (see table at end of

DYNAMICS section).

L T TL

¢_/0 Gsz = GJ where
¢ = total angle (radians) of twist,
T = moment or torque, and
L = length of shaft.

Ty, = Gr(TI(G] = TrlJ

T _GJ

s =L , where

T/¢ gives the twisting moment per radian of twist.
This is called the torsional stiffness and is often de-

noted by the symbol % or c.
For Hollow, Thin-Walled Shafts

T
T = A 1 where
t = thickness of shaft wall and
A_ = the total mean area enclosed by the shaft mea-

cnirad tn +11o m;rlm;‘nf nf' fho Wﬂ]]
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Deflections of Torsionally
Loaded Circular Shafts

¢ = TL/GJ = rotation between any two
points on the shaft (radians), and

T = the applied torque
L = the length of the shaft
G = the shear modulus of elasticity

J = the polar moment of inertia of the
shaft = 7T( outer lnner) /2

9C
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Bending Stresses
o =Mc/I

— where(is the bending stress in the
beam

—M is the applied moment

—c is the distance from the neutral axis to
an outside fiber on the beam

—I is the moment of inertia of the beam

—Stresses are normal (tensile or
compressive) and are zero at the
neutral axis and maximum on the
outside fibers of the beam.

87
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BEAMS 20

Shearing Force and Bending Moment Sign Con-
ventions

1. The bending moment is positive if it produces
bending of the beam concave upward (compression
in top fibers and tension in bottom fibers).

9. The shearing force is positive if the right portion of
the beam tends to shear downward with respect to

the left.

Positive Bending Negative Bending

o ——

Positive Shear Negative Shear

The relationship between the load (w), shear (V), and
moment (M) equations are:

—w = dV(x)/dx; V = dM(x)/dx
V, -V, = /xlxzw(x)dx

M,-M, = /xx2V(x)dx

1




._I

s

A\%u‘*’/'\z%Z“HS‘-Aa* o

Lé‘ A\+A2+A3+’“'

-ToTAL

=TT +ZAd"




Y
i \Ffﬁ?: o
i 0.798"

e ——  30.94"

15.47"

— X-X Axis
Wide flange is W30x211.
Area = 62 in"2, Ixx = 10300 in™4
Channel is C15x50:
Area = 14.7 in™2, Iyy = 11 in"™4

A2



9"

]5"



Shear and Bending Moment
Diagrams

O Use statics to solve for reactions.

O The area under any diagram gives
the change in value on the next
diagram.

O The value on any diagram gives the
slope of the next diagram.

o If load is uniform constant, xbar = the
starting shear (from shear diagram) /
the load rate (from load diagram.)
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and 1s located at the section 3 ft from the right end.

In a similar way, the maximum compressive fiber stress will occur where
Mc 1s greatest on the compressive side of the beam. At 3 ft from the left end. the
compressive stress is below the neutral axis, and

Mc = 6,000(12)5 = 360,000 Ib-in?

At 3 ft from the right end. the compressive stress is above the neutral axis,

and
Mce =9.000(12)3 = 324,000 Ib-in?
Therefore.
6.000(12)5 .
Omay = e = 2,650 ps1 C

and 1s located at the section 3 ft from the left end.
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oiresses 1n beams

€, = —y/p, where

48

p = the radius of curvature of the deflected axis of

Yy

the beam and

= the distance from the neutral axis to the longi-

tudinal fiber in question.

Using the stress-strain relationship ¢ = Eeg,
Axial Stress: o0, = —Ey/p, where

the normal stress of the fiber located y-distance
from the neutral axis.

1/p = M/(EI), where

the moment at the section and
the moment of inertia of the cross-section.

o, = -My/I, where
the distance from the neutral axis to the fiber
location above or below the axis. Let y = c,
where ¢ = distance from the neutral axis to

the outermost fiber of a symmetrical beam sec-
tion.

o. = *Mc/I

X

Let S = I/c: then

S

o, = *M/S, where

x
the elastic section modulus of the beam mem-

ber.



Beam Cross Shearing Stresses

o T = VQ/Ib where

—V = Shear force from shear diagram

—Q@ = First moment of area above level
where shear stress is desired

—I = Moment of inertia about NA

—b = thickness of beam at level where
shearing stresses are desired.

b



Shear Flow: ¢
Shear stress: 7

D> ST AR

VQ/I and
VQ/Ib), where

xy
shear flow,

shear stress on the surface,

shear force at the section,

width or thickness of the cross-section, and
A'y, where

area above the layer (or plane) upon which the
desired shear stress acts and

distance from neutral axis to area centroid.

40
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Deflections of beams

O Direct integration
O Tables and superposition

St



Deflection of Beams [7‘. é
Using 1/p = M/EI),

2
ElI ay - M, differential equation of
deflection curve

dM(x)/dx =V

S
o
I

4
EI%Y = dVx)ds = - w

Determine the deflection curve equation by double
integration (apply boundary conditions applicable to
the deflection and/or slope).

EI(dyldx) = [ M(x)dx
Ely = [[/ M(x)dx]dx

The constants of integration can be determined from
the physical geometry of the beam.
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The greatest slope and deflection
occur at the end of the beam where
z = L; their values are
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Beam Deflection Format
(4 is positive d

y P _ Pa® B
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Cylindrical Pressure Vessels

o Hoop stresses act around the tank,
in tension - {, = pD/2t

o Longitudinal or axial stresses act
along the axis of the tank - 1, = pD/4t

o Maximum shear stresses - ‘T = pD/4t

0S
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Spherical Pressure Vessels

O All tensile stresses in all directions
A, =pr/2t
o Max. shear stresses - [ = pr/4t

A4S



THIN WALLED CYLINDRICAL PRESSURE

VESSEL 5 5

Hoop Tension

o, = pD/2t, where

0, = hoop stress,

p = the uniform internal pressure,

D = internal diameter of cylinder, and
t = wall thickness.

Axial Tension

o, = pD/4t, where
o, = axial stress of tank.



Columns

o Pinned on each end - Pcr = 7% El / (KL)?

—Pcr is the critical failure buckling load with
no factor of safety,

—E Is the modulus of elasticity,

—I is the moment about the weak or buckling
axis of the column,

—L is the length between points of zero
moment or points of inflection,

—K is the effective length factor.

#S



Columns acting as beams

O Pinned on each end, eccentrically
loaded short columns too short to
buckle

= F/A +- Mc/l where F/A is the regular axial
stress, and Mc/l is the regular bending
stress.

SS
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COLUMNS
Beam-Columns (axially-loaded beams)

Combining Stresses (eccentrically-loaded short
columns)

= F/[A+Mc/I

Omax »

max mln

Long Columns--Euler's Formula
P, = n*EI/(k])?, where

critical axial loading,

a constant determined by column end re-
straints, and

[ = unbraced column length.

Substitute I = rA:
P_/A = 2 E/1k(/r]? , where

PCI‘
k

= radius of gyration and
l/Ir = slenderness ratio for the column.

0.5 0.65 both ends ﬁxed

0.7 0.80 one end fixed and
other end pinned
1.0 1.00 both ends pinned

onN 91N nna ond fivad and
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Combined Stresses

O Axial and torsion (tension and shear)

o Axial and bending (tension and
tension)

O Stresses under footings
(compression and compression)

o Axial and torsion and bending and
pressure (cheee!)

O Plane stress equations for combined
stresses

<



Combined Stresses

o Compute axial stresses and torsional
stresses and bending stresses and
hoop and longitudinal pressure
stresses separately and put them on
the stress block. Then determine
principal stresses from principal
stress equations (see later.)

LS
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Stresses on an plane and
Principal Stresses

O Knowing a X,Gy, and Txy, use the
stress tfransformation equations
(From Statics) to find stresses on
any other plane.

O Knowing @x,q y, and Txy, use
Mohr’s circle to determine the
principal stresses.

YA/
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< e
From Statics:
o, = (0, + 0)/2 + [(0,- 0,)2)cos 26 + 7, sIn 20
0, = (0, + 0)2 - [(o,- 0,)/2]cos 20 - 7,,sin 20

Tyt = = [(o, - ay)/2] sin 260 + T,y COS 26



Mohr's Circle--Stress 6

The stresses on a specified plane surface can be de-
ter}mned from the stresses on two other surfaces
which are perpendicular to each other.

To construct a Mohr's circle, the following sign’ con-
ventions are used.

1. Tensile normal stress components are considered
positive. Compressive normal stress components
are negative.

9. Shearing stresses will be considered positive when
the pair of shearing stresses, acting on opposite and
parallel faces of an element, forms a clockwise cou-
ple. Negative, a counterclockwise couple.
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Shear stresses on bars subjected
0 pure tension or compression

P [/2A
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Loads in statically indeterminate

axially loaded bars
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Loads in statically indeterminate
torsionally loaded bars

¢ nT /
— /
0.3L | 0.7 L
T
0.3k l o 7L
lor o
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Loads in statically indeterminate

heated bars LY
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)p Ccucﬁere 657551

Determine the stress inducedin the

soncrete andinthe steel bars shown.

Use G each 2inchdiameter structural

steelbars and fairly high 6tr6n@th
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STATIC LOADING FAILURE THEORIES 74

Maximum-Normal-Stress Theory

The maximum-normal-stress theory states that failure
occurs when one of the three principal stresses equals
the strength of the material. If o, > 0, > o5 then the
theory predicts that failure occurs whenever o, > S, or
o, < - S, where S, and S, are the tensile and com-
pressive strengths, respectively.

Maximum-Shear-Stress Theory

The maximum-shear-stress theory states that yielding
begins when the maximum shear stress equals the
maximum shear stress in a tension-test specimen of
the same material when that specimen begins to yield.
If 0,> 0, > 05 then the theory predicts that yielding
will occur whenever 7, . > S /2 where S is the yleld
strength.

Distortion-Energy Theory

The distortion-energy theory states that yielding begins
whenever the distortion energy in a unit volume equals
the distortion energy in the same volume when uniaxi-
ally stressed to the yield strength. The theory predicts
that yielding will occur whenever

{[(0, = 0% + (0, — 0)* + (0, - 0)%1/2}'# > S,
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ELASTIC STRAIN ENERGY

If the strain remains within the elastic limit, the work
done during deflection (extension) of a member will be
transformed into potential energy and can be recov-

ered.

If the final load is P and the corresponding elongation
of a tension member is J, then the total energy U
stored is equal to the work W done during loading.

U=W= Po/2

P

)
The strain energy per unit volume is

u = UAL = o°/2E (for tension)





