Review for Fundamentals of Engineering Exam

Ralph A. Wurbs, Ph.D., P.E. Professor of Civil Engineering Texas A&M University

Fluid Mechanics

- Fluid Properties
- Fluid Statics
- Fluid Dynamics
- Fluid Measurements

EIT Review Manual by Michael R. Lindeburg, P.E. Professional Publications, Inc. 1997-1998 Edition

Topic VII: Fluid Mechanics

Chapter 22 Fluid Properties

Chapter 23 Fluid Statics

Chapter 24 Fluid Dynamics

Chapter 25 Fluid Measurements and Similitude

states of matter

- solid
- fluid
 - liquid
 - gas

A fluid is a substance that deforms continuously under the action of an applied shear stress.

Fluid Properties

density
specific volume
specific weight
specific gravity
pressure
stress
viscosity
surface tension
capillarity

Mass and Force Units

dimension: mass force

Systeme International (SI) units:

kilogram (kg) newton (N)

British Gravitational System units:

slug pound

English Engineering System units:

pound mass (lbm) pound force (lbf)

Newton's Second Law:

force = mass · acceleration

$$F = m \cdot a$$

weight = mass · acceleration of gravity

$$W = m \cdot g$$

standard acceleration of gravity

$$g = 9.807 \text{ m/s}^2 = 32.174 \text{ ft/s}^2$$

SI System

$$w = m g$$

$$1N = 1Kg \cdot m/s^2$$

British Gravitational System

$$m = w/g$$

1 slug =
$$lb / (ft/s^2) = lb \cdot s^2/ft$$

English Engineering System

$$F = ma/g_c$$

where:
$$g_c = 32.174 \text{ ft.lbm/lbf.s}^2$$

$$1 lbf = \frac{1 lbm \times 32.174 ft/s^{2}}{32.174 ft \times lbm / lbf \times s^{2}}$$

Density (p) and Specific Weight (y)

$$\rho = \text{mass / unit volume}$$

$$(kg/m^3, slugs/ft^3, lbm/ft^3)$$

$$y = \text{weight / unit volume}$$

 $(N/m^3, lb/ft^3, lbf/ft^3)$

SI and British Gravitational System:

$$y = \rho g$$

English Engineering System:

$$\gamma = \rho (g / g_c)$$

For water at temperature of 10°C or 50°F:

$$\rho = 1,000 \text{ kg/m}^3$$

$$= 1.94 \text{ slugs/ft}^3$$

$$= 62.4 \text{ lbm/ft}^3$$

$$y = 9.80 \text{ kN/m}^3$$

= 62.4 lb/ft³
= 62.4 lbf/ft³

Specific Gravity (S.G.)

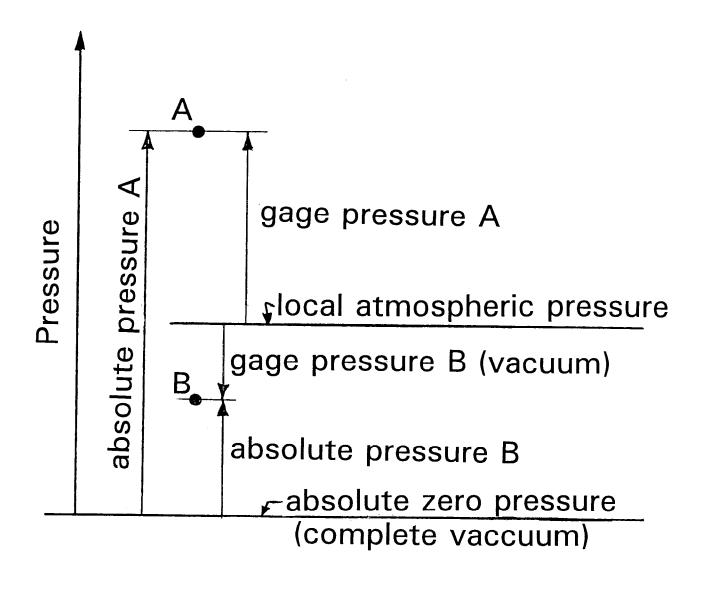
The specific gravity of a fluid is the ratio of the density of the fluid to the density of water at a specified temperature and pressure.

S.G. =
$$\rho_{\text{fluid}} / \rho_{\text{water}}$$

Absolute and Gage Pressure

absolute pressure = gage pressure + atmospheric pressure

$$P_{abs} = P_{gage} + P_{atm}$$



Stress

stress (τ) is force per unit area

- normal stress
- tangential (shear) stress

Viscosity

The viscosity of a fluid is a measure of its resistance to flow when acted upon by an external force such as a pressure gradient or gravity.

Newton's Law of Viscosity

$$\tau = \mu (dv/dy)$$

τ - shear stress
dv/dy - velocity gradient
μ - absolute or dynamic
viscosity

 ν - μ/ρ

 ν - kinematic viscosity m²/s or ft²/s

μ - dynamic viscosity N·s/m² or lb·s/ft²

 ρ - density kg/m³ or slug or lbm/ft³

For water at temperature of

of 10°C or 50°F:

$$\mu = 1.307 \times 10^{-3} \text{ N} \cdot \text{s/m}^2$$

$$= 2.735 \times 10^{-5} \text{ lb} \cdot \text{s/ft}^2$$

$$v = 1.306 \times 10^{-6} \text{ m}^2/\text{s}$$

$$= 1.410 \times 10^{-5} \text{ ft}^2/\text{s}$$

Surface Tension

Surface tension is property used to describe a phenomena observed at the interface between a gas and liquid where intermolecular cohensive forces form an imaginary film capable of resisting tension.

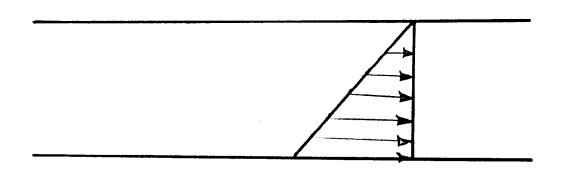
Capillarity

Capillary action is caused by surface tension between a liquid and solid surface. Water rises in a thin-bore tube.

Fluid Statics

Hydrostatic pressure is the pressure a fluid exerts on an immersed object or on container walls.

hydrostatic pressure distribution

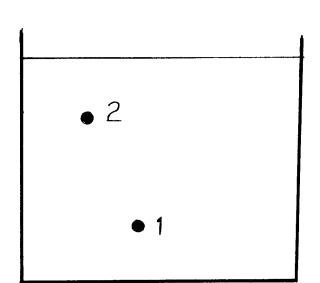


Fluid Statics

$$P_1 - P_2 = y (z_2 - z_1)$$

$$P = yh$$

$$F = pA$$



where:

 P_1 = pressure at elevation z_1

 P_2 = pressure at elevation z_2

 $h = z_2 - z_1 = head$

p = pressure for head h

 γ = specific weight

F = force

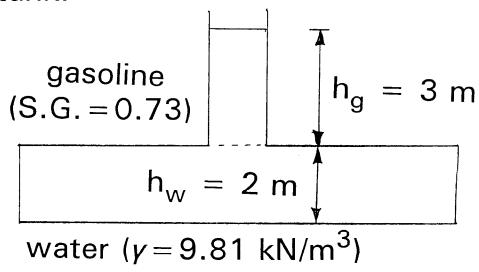
A = area

Example: What is the pressure 10 feet below the surface of a swimming pool?

$$p = yh = (62.4 lb/ft^3) (10ft)$$

= 624 lb/ft²

Example: The tank of water has a 3-m column of gasoline (S.G. = 0.73) above it. Atmospheric pressure is 101 kPa. Compute the pressure on the bottom of the tank.

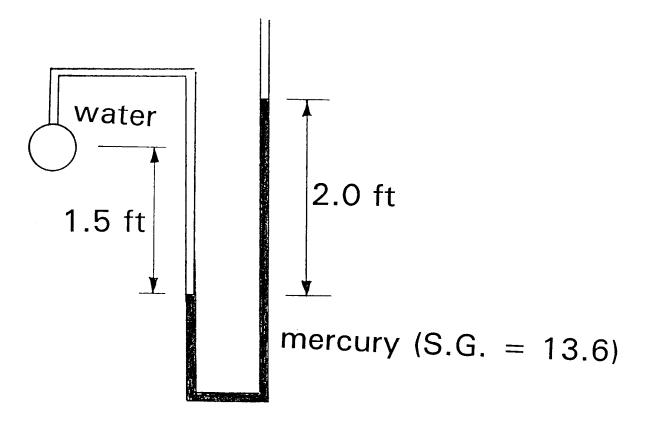


pressure at bottom of tank

$$P_{gage} = \gamma_w h_w + \gamma_g h_g$$

= (9.81 kN/m³) (2m)
+ (0.73) (9.81 kN/m³) (3m)
= 41.1 kN/m²
 $P_{abs} = P_{gage} + P_{atm}$
= 41 kN/m² + 101 kN/m²
= 142 kN/m²
= 142 kPa

Example: Use the manometer measurements to compute the pressure in the pipe.



$$P_{pipe} + \gamma_w h_w - \gamma_m h_m = 0$$
 $P_{pipe} + (62.4 \text{ lb/ft}^3) (1.5 \text{ft})$
 $- (13.6) (62.4 \text{ lb/ft}^3) (2.0 \text{ ft}) = 0$
 $P_{pipe} = 1,604 \text{ lb/ft}^2$

Forces on Submerged Surfaces

Plane Surface

$$F = yh_cA$$
 magnitude

$$I_p - I_c = I_c / (I_c A)$$
 location

Curved or Plane Surface

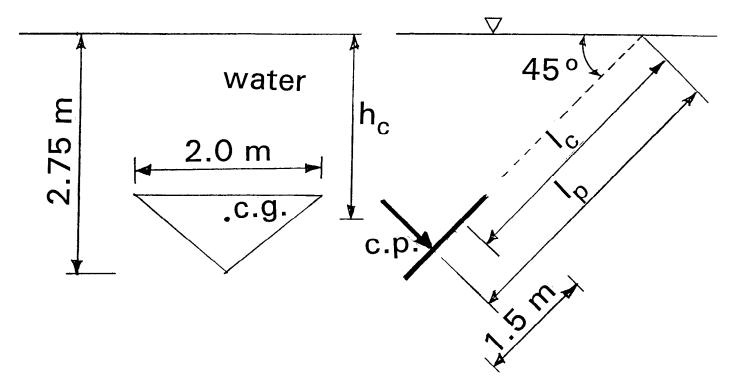
$$F_h = \gamma h_c A$$
 (vertical projection)

$$F_{v} = yV$$
 (weight of fluid)

Buoyant Force

$$F = \gamma$$
 (volume displaced)

Example: Compute the magnitude and location of the resultant force.



moment of inertia $I_c = bh^3/36$

$$F = yh_cA$$

$$I_p - I_c = I_c / (I_cA)$$

$$A = 0.5 (2m)(1.5m) = 1.5 m^2$$

$$h_c = 2.75 m - [(2/3) (1.5m)] \sin 45^\circ$$

$$= 2.043 m$$

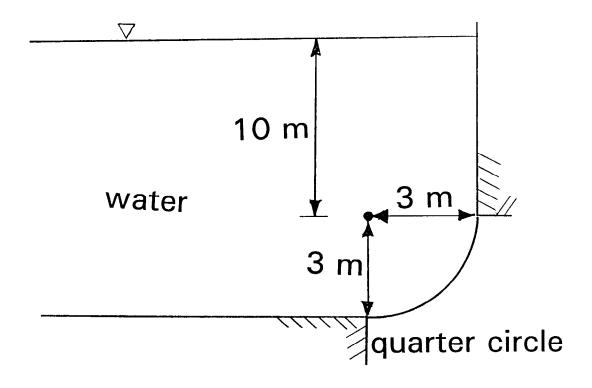
$$I_c = h_c / \sin 45^\circ = 2.043 m / 0.7071$$

$$= 2.889 m$$

moment of inertia
$$I_c = bh^3/36$$

 $I_c = (2m)(1.5m)^3/36 = 0.1875 \text{ m}^4$
 $F = \gamma h_c A$
 $= (9.80 \text{ kN/m}^3)(2.043 \text{ m})(1.5 \text{ m}^2)$
 $= 30.0 \text{ kN}$
 $I_p - I_c = I_c / (I_c A)$
 $= 0.1875 \text{ m}^4/[(2.889\text{m}) (1.5\text{m}^2)]$
 $= 0.0433 \text{ m}$
 $I_p = 0.0433 \text{ m} + 2.889 \text{ m} = 2.932 \text{ m}$

Example: Compute the force on the curved corner for a unit width.



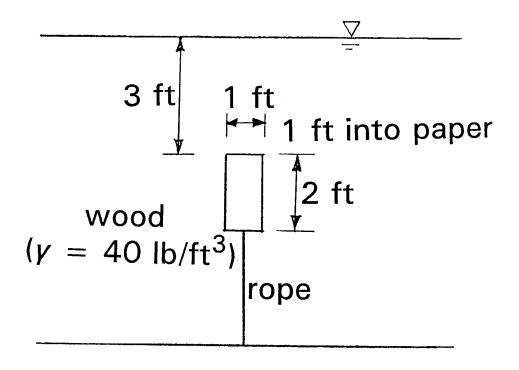
$$F_H = yh_cA$$

= (9.80 kN/m³) (11.5m) (3m²)
= 338 kN
 $F_v = yV$
volume (V) =
(10m) (3m) (1m) + (1/4) π (3m)² (1m)
= 37.07 m³
 $F_v = (9.80 \text{ kN/m³})(37.07 \text{ m³}) = 363 \text{ kN}$
 $F = (F_H^2 + F_V^2)^{0.5} = (338^2 + 363^2)^{0.5}$
= 496 kN

Laws of Buoyancy and Flotation

I. A body immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced.

A floating body displaces its own weight of the liquid in which it floats. Example: Compute the force in the rope.



buoyant force (
$$F_B$$
) =

 γ (volume displaced)

 $F_B = (62.4 \text{ lbs/ft}^3) (2 \text{ ft}^3)$
 $= 124.8 \text{ lbs}$

weight of wood (W)

 $W = (40 \text{ lbs/ft}^3) (2 \text{ ft}^3) = 80 \text{ lbs}$
 $F_B - W - F_{rope} = 0$
 $124.8 \text{ lbs} - 80 \text{ lbs} - F_{rope} = 0$
 $F_{rope} = 44.8 \text{ lbs}$

Alternative Solution

The buoyant force (F_B) on a submerged body is the difference between the vertical component of pressure force on its underside and upper side.

$$F = \gamma h_c A$$
 or $F = \gamma V$

$$F_B = (62.4 \text{ lb/ft}^3)(5 \text{ ft})(1 \text{ ft}^2)$$

$$- (62.4 \text{ lb/ft}^3)(3 \text{ ft})(1 \text{ ft}^2)$$

$$= 124.8$$

Fluid Dynamics

Conservation Laws mass energy momentum

Flow in pressure conduits Flow in open channels

Conservation of Mass

(Continuity Equation)

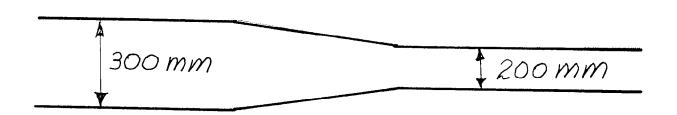
$$\dot{\mathbf{m}}_{1} = \dot{\mathbf{m}}_{2}$$

$$\rho_{1} \mathbf{A}_{1} \mathbf{V}_{1} = \rho_{2} \mathbf{A}_{2} \mathbf{V}_{2}$$

For incompressible fluids ($\rho_1 = \rho_2$)

$$A_1V_1 = A_2V_2$$
$$Q_1 = Q_2$$

Example: Three kN/s of water flows through the pipeline reducer. Determine the flow rate and velocity in the 300 mm and 200 mm pipes.



$$\gamma_1 = \gamma_2 = 9.8 \text{ kN/m}^3$$
 $\gamma = \rho g$
 $w = mg$
 $\dot{m} = \rho_1 A_1 V_1 = \rho_2 A_2 V_2$
 $\dot{w} = \gamma_1 A_1 V_1 = \gamma_2 A_2 V_2$

$$Q = \dot{w}/\gamma = 3 \text{ kN/s} / 9.8 \text{ kN/m}^3$$

$$Q = 0.306 \text{ m}^3/\text{s}$$

$$V = Q/A$$

$$A = 0.25\pi D^2$$

$$V_1 = 0.306 \text{ m}^3/\text{s} / 0.25\pi (0.3)^2$$

$$V_1 = 4.33 \text{ m/s}$$

$$V_2 = 0.306 \text{ m}^3/\text{s} / 0.25\pi (0.2)^2$$

 $V_2 = 9.74 \text{ m/s}$

Conservation of Momentum

(Impulse-Momentum Equation)

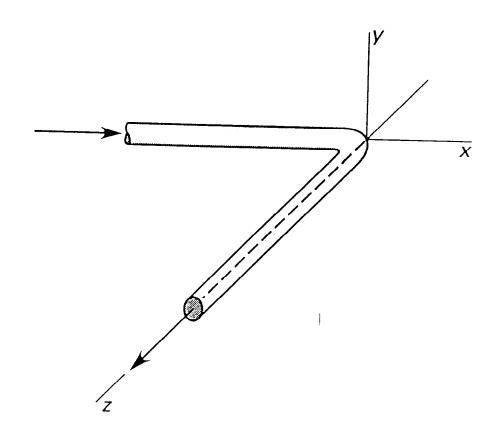
$$\Sigma \vec{F} = \rho Q (\vec{V}_{out} - \vec{V}_{in})$$

$$\sum F_{x} = \rho Q(V_{2x}-V_{1x})$$

$$\sum F_{y} = \rho Q(V_{2y}-V_{1y})$$

$$\sum F_{z} = \rho Q(V_{2z}-V_{1z})$$

Example: Water is flowing at 0.884 m³/s through a 15 cm diameter pipe, that has a 90° bend. What is the reaction on the water in the z-direction in the bend?



$$\rho = 1000 \text{ kg/m}^3$$

$$V = Q/A$$

$$A = 0.25\pi D^{2}$$

$$V = 0.884 \text{ m}^{3}/\text{s} / 0.25\pi (0.15 \text{ m})^{2}$$

$$V = 50 \text{ m/s}$$

$$\begin{split} \sum F_z &= \rho Q(V_{2z}\text{-}V_{1z}) \\ F_z &= (1000 \text{ kg/m}^3)(0.884 \text{ m}^3/\text{s})(0\text{-}50 \text{ m/s}) \\ F_z &= -44,200 \text{ kg}\cdot\text{m/s} \\ F_z &= -44,200 \text{ N} \end{split}$$

Reaction = 44,200 N = 44.2 kN

Conservation of Energy

(Bernoulli and Energy Equations)

total head =
$$z + \frac{P}{\gamma} + \frac{V^2}{2g}$$

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g}$$

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} + h_p = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + h_L$$

Pitot Tube
$$\frac{v^2}{2g}$$

$$=$$

$$v, p_s$$

$$v, p_s$$

$$Z_{1} + \frac{P_{1}}{\gamma} + \frac{V_{1}^{2}}{2g} = Z_{2} + \frac{P_{2}}{\gamma} + \frac{V_{2}^{2}}{2g}$$

$$0 + \frac{P_{0}}{\gamma} + 0 = 0 + \frac{P_{S}}{\gamma} + \frac{V^{2}}{2g}$$

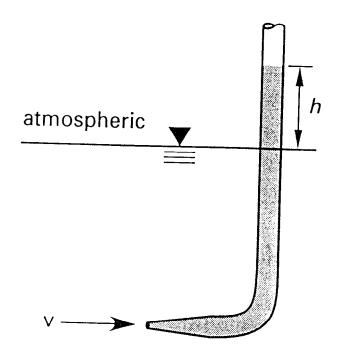
$$\frac{P_{0}}{\gamma} - \frac{P_{S}}{\gamma} = \frac{V^{2}}{2g}$$

$$\frac{P_{0}}{\gamma} - \frac{P_{S}}{\gamma} = h$$

$$h = \frac{V^{2}}{2g}$$

$$V = (2gh)^{0.5}$$

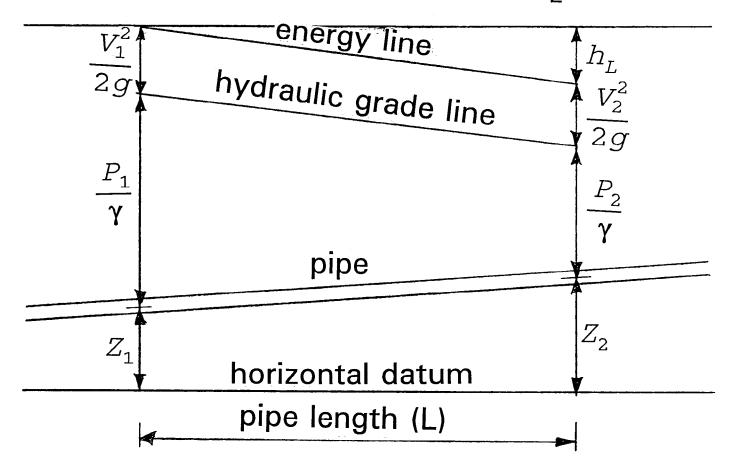
Example: The height of water in the pitot tube is measured to be 7.3 cm. What is the velocity at that point in the flow.



$$V = (2gh)^{0.5}$$

 $V = [2(9.81 \text{ m/s}^2)(0.073 \text{ m})]^{0.5}$
 $V = 1.2 \text{ m/s}$

slope of energy line $S = h_I/L$



head = energy per unit weight

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + h_L$$

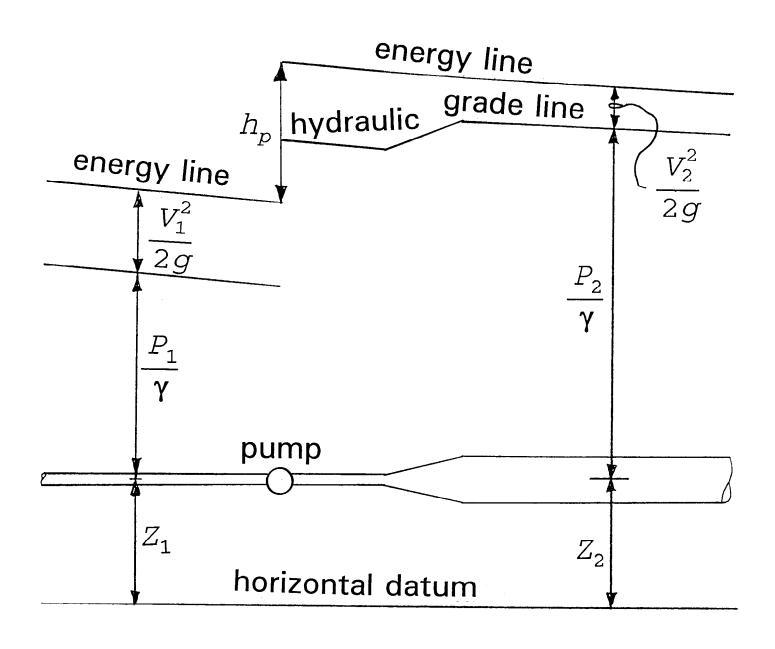
Pressure and Pressure Head

$$p = yh$$
 $h = p/y$
for $p = 1$ psi (lb/inch²)
 $h = (l lb/in^2) (144 in^2/ft^2) / 62.4 lb/ft^3$
 $= 2.31 ft$

Pressures in municipal water distribution systems are typically 60 - 80 psi (139 - 185 ft).

faucet pressures > 5 psi (11.5 ft)

main pressures > 35 psi (80.8 ft)



$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} + h_p = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + h_L$$

Darcy - Weisbach Equation

$$h_L = f(\frac{L}{D}) (\frac{V^2}{2q})$$

h_L = head loss due to pipe friction (feet or meters)

f = friction factor (dimensionless)

L = length of pipe (ft or m)

D = pipe diameter (ft or m)

V = flow velocity (ft/sec or m/sec)

g = gravitational acceleration constant (32.2 ft/sec² or 9.81 m/sec²)

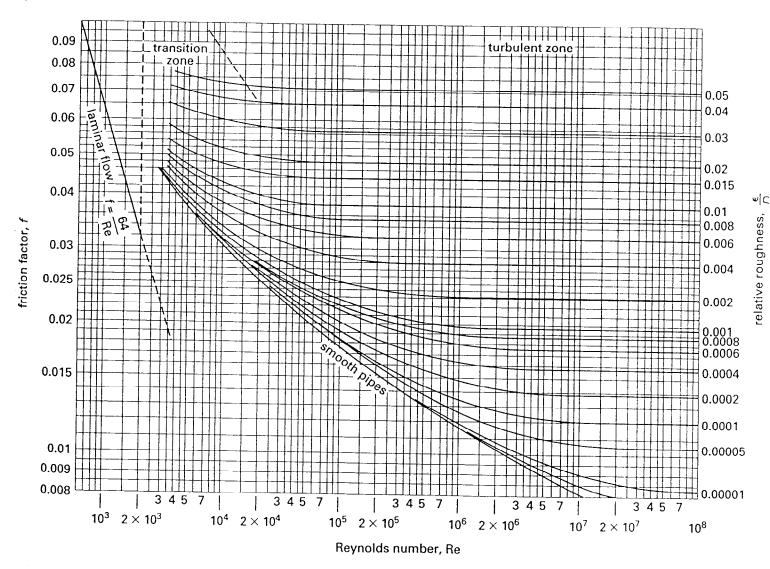
 ϵ = roughness (ft or m)

 ϵ/D = relative roughness (dimensionless)

h_f	=	fLv ²
		$\overline{2Dg}$

	€		
material	ft	m	
riveted steel	0.003-0.03	0.9-9.0	
concrete	0.001 - 0.01	0.3 - 3.0	
galvanized iron	0.00085	0.25	
commercial steel			
or wrought iron	0.00015	0.046	
drawn tubing	0.000005	0.0015	

Figure 24.6 Moody Friction Factor Chart



$$Re = \frac{vD}{v}$$

Darcy-Weisbach Example: For a discharge (Q) of $1.0 \text{ ft}^3/\text{s}$, compute the head loss in 1,500 feet of new 6-inch diameter cast iron pipe ($\epsilon = 0.00085$ ft). Assume a water temperature of 60° F.

A =
$$1/4 \pi D^2 = 1/4 \pi (6/12)^2 = 0.196 \text{ ft}^2$$

V = $Q/A = 1.0 \text{ ft}^3/\text{s} / 0.196 \text{ ft}^2 = 5.09 \text{ ft/s}$
 $v = 1.217 \times 10^{-5} \text{ ft}^2/\text{s}$

$$N_R = \frac{VD}{v} = \frac{(5.09 \ ft/s) (0.5ft)}{1.217 \cdot 10^5 \ ft^2/s} = 2.09 \cdot 10^5$$

$$\epsilon/D = 0.00085 \text{ ft} / 0.5 \text{ ft} = 0.0017$$

$$f = 0.023$$

$$h_L = f \frac{L}{D} \frac{V^2}{2g}$$

$$h_L = 0.023 \left(\frac{1,500ft}{0.5ft}\right) \frac{(5.09ft/s)^2}{2(32.2ft/s^2)}$$

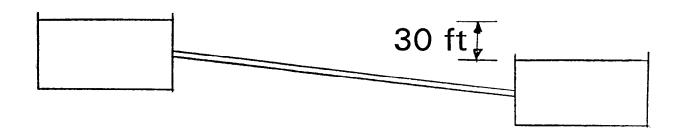
$$= 27.8 \text{ ft}$$

Minor Losses

 $h_L = C (V^2/2g)$

exit/entrance condition	C value	
exit, sharp	1.0	
exit, protruding	0.8	
entrance, sharp	0.5	
entrance, rounded	0.1	
entrance, gradual, smooth	0.04	

Example: A 6-inch diameter 500 ft long steel pipe ($\epsilon = 0.00015$ ft) conveys flow between two reservoirs which have a difference in water surface elevation of 30 ft. The pipe exit and entrance are square edge. Compute the flow rate.



$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + h_L$$

$$30 + 0 + 0 = 0 + 0 + 0 + h_L$$

 $h_1 = 30 \text{ ft}$

Pipe Friction

$$\epsilon/D = 0.00015 \text{ ft} / 0.5 \text{ ft} = 0.0003$$

assume f = 0.016

$$h_L = f \left(\frac{L}{D}\right) \frac{V^2}{2g}$$

$$h_L = 0.016 \ (\frac{500}{0.5}) \frac{V^2}{2g} = 16 \frac{V^2}{2g}$$

Minor Losses (entrance and exit)

$$h_{L_m} = 0.5 \frac{V^2}{2g} + 1.0 \frac{V^2}{2g} = 1.5 \frac{V^2}{2g}$$

Compute V for assumed f

$$h_L = 16 \frac{V^2}{2g} + 1.5 \frac{V^2}{2g} = 17.5 \frac{V^2}{2g} = 30 ft$$

$$V = 10.5 \text{ ft/s}$$

Check f

$$N_R = \frac{VD}{v} = \frac{(10.5 \ ft/s) \ (0.5 \ ft)}{1.22 \cdot 10^{-5} \ ft^2/s}$$

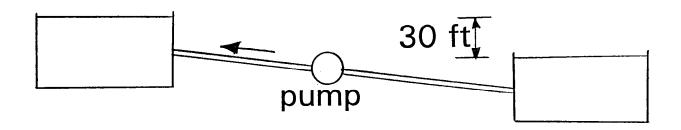
= 4.3 x 10⁵

Compute Q

$$Q = VA = (10.5 \text{ ft/s}) (0.196 \text{ ft}^2)$$

= 2.06 ft³/s

Example: - Assume a pump is added to the previous example and the flow direction is reversed. What pump head is required for a discharge of 2.0 cfs.



$$A = 1/4 \pi D^2 = 1/4 \pi (0.5 \text{ ft})^2$$

= 0.1963 ft²

$$V = Q/A = 2 cfs / 0.1963 ft^2$$

= 10.2 ft/s

from previous problem:

$$h_L = 16 \frac{V^2}{2g} + 1.5 \frac{V^2}{2g} = 17.5 \frac{V^2}{2g}$$

$$h_L = 17.5 \left(\frac{(10.2 \ ft/s)^2}{2(32.2 \ ft/s^2)} \right) = 28.2 \ ft$$

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} + h_p = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + h_L$$

$$0 + 0 + 0 + hp = 30 + 0 + 0 + 28.2$$

hp = 58.2 feet

Power and Energy

energy - ability to do work

work - force through a distance

power - rate of transferring energy or work per unit of time

power = energy/time =
 (weight/time)(energy/weight)

P = y Q h

units of power

kilowatt (kw) - kN·m/s horsepower (hp) - 550 ft·lb/s 1 hp = 0.746 kw

$$P = y Q h / \eta$$

P - power ($kw = kN \cdot m/s$ or $ft \cdot lb/s$)

y - unit weight (kN/m³ or lb/ft³)

Q - discharge (m³/s or ft³/s)

h - head (m or ft)

 η - efficiency

brake horsepower - input horsepower delivered to the pump shaft

$$BHP = \frac{\gamma Q h_p}{550 \eta}$$

horsepower (hp) - 550 ft·lb/s

Example: Determine the horsepower required for the pump of the previous problem, assuming the pump efficiency is 75%.

$$Q = 2.0 \text{ ft}^3/\text{s}$$

$$h_{p} = 58.2 \text{ ft}$$

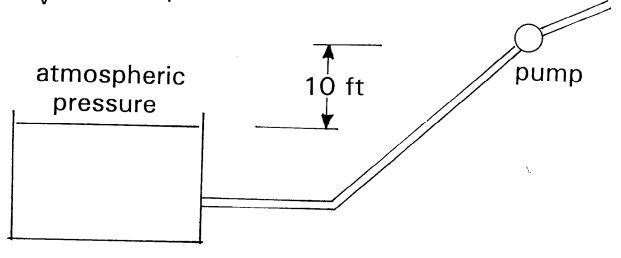
$$\eta = 0.75$$

$$BHP = \frac{\gamma Q h_p}{550 \eta}$$

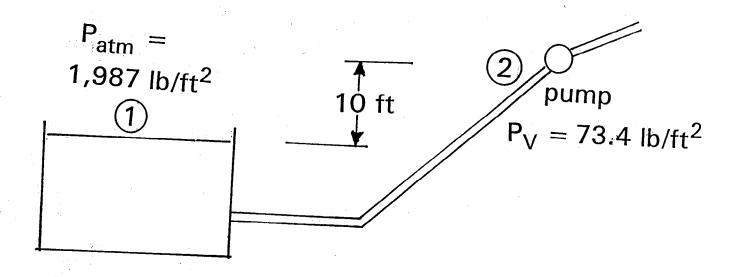
$$BHP = \frac{(62.4 \ lb/ft^3) (2.0 \ ft^3/s) (58.2 \ ft)}{(550 \ \frac{ft \cdot lb/s}{hp}) (0.75)}$$

= 17.6 horsepower

Example: Compute the discharge rate that causes the pressure to drop to vapor pressure. The pipe between the reservoir and pump has a length of 1,000 ft, diameter of 3 feet, and friction factor (f) of 0.02. Neglect minor losses. For a water temperature of $80^{\circ}F$, the vapor pressure (P_{V}) is 0.51 psia.



$$P_{atm} = 13.8 \text{ psia} = 1,987 \text{ lb/ft}^2$$
 $P_{V} = 0.51 \text{ psia} = 73.4 \text{ lb/ft}^2$
 $y = 62.22 \text{ lb/ft}^3$
 $h_{L} = f(L/D) (V^2/2g)$
 $h_{L} = (0.02)(1000 \text{ft/3ft})(V^2/[2(32.2 \text{ ft/s}^2)]$
 $h_{L} = 0.119 V^2$



$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + h_L$$

$$0 + \frac{P_{atm}}{\gamma} + 0 = Z_P + \frac{P_V}{\gamma} + \frac{V_2^2}{2g} + h_L$$

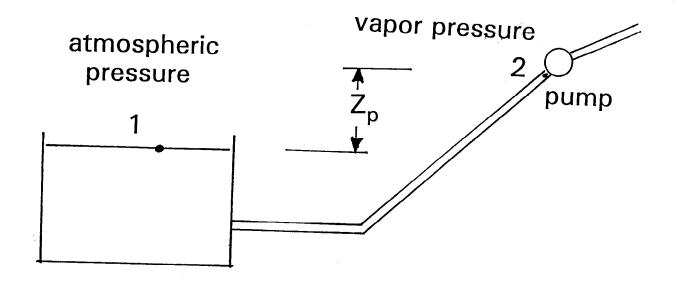
$$\frac{1,987 \ lb/ft^2}{62.22 \ lb/ft^3} = 10ft +$$

$$\frac{73.4 \ lb/ft^2}{62.22 \ lb/ft^3} + \frac{V^2}{2(32.2 \ ft/s^2)} + 0.119 V^2$$

$$V = 13.2 \text{ ft/s}$$

$$Q = VA = (13.2 \text{ ft/s}) (7.069 \text{ ft}^2)$$

 $Q = 93.3 \text{ ft}^3/\text{s}$



$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + h_L$$

$$0 + \frac{P_{atm}}{\gamma} + 0 = Z_P + \frac{P_V}{\gamma} + \frac{V_2^2}{2g} + h_L$$

$$\frac{P_{atm} - P_v}{\gamma} = Z_p + \frac{V^2}{2g} + h_L$$

$$h_L = KQ^N$$

 $h_L = KQ^2$

Darcy Weisbach

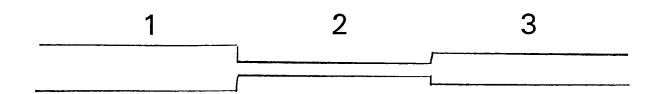
$$h_f = f(L/D)(1/2A^2g)Q^2$$

 $K = f(L/D)(1/2A^2g)$

Minor Losses
$$h_{L} = C (Q^{2}/2gA^{2})$$

$$K = C/2gA^{2}$$

FOR PIPES IN SERIES

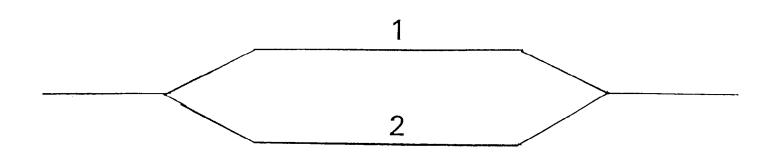


$$Q = Q_1 = Q_2 = Q_3$$

 $h_L = h_{L1} + h_{L2} + h_{L3}$

$$h_{LE} = h_{L}$$
 $K_{E} Q^{n} = K_{1} Q^{n} + K_{2} Q^{n} + K_{3} Q^{n}$
 $K_{E} = K_{1} + K_{2} + K_{3}$

FOR PIPES IN PARALLEL



$$Q = Q_1 + Q_2$$

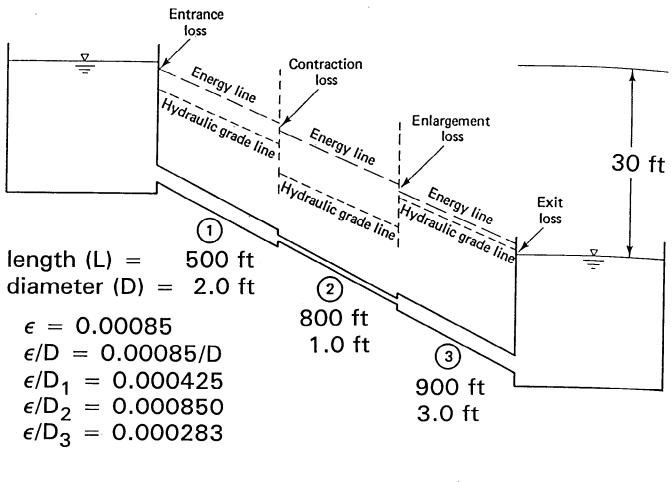
 $h_L = h_{L1} = h_{L2}$

$$h_L = KQ^n \qquad Q = (h_L/K)^{1/n}$$

$$(h_{LE}/K_E)^{1/n} = (h_{L1}/K_1)^{1/n} + (h_{L2}/K_2)^{1/n}$$

 $(1/K_E)^{1/n} = (1/K_1)^{1/n} + (1/K_2)^{1/n}$

Example: Compute the discharge. Neglect the minor losses.



estimated f
$$A = 1/4 \pi D^2$$

 $f_1 = 0.0170$ $A_1 = 3.142 \text{ ft}^2$
 $f_2 = 0.0190$ $A_2 = 0.7854 \text{ ft}^2$
 $f_3 = 0.0160$ $A_3 = 7.069 \text{ ft}^2$

$$h_L = f (L/D) (Q^2/2gA^2) = KQ^2$$
 $K = F(L/D)(Q^2/2gA^2)$
 $K_1 = 0.00669$
 $K_2 = 0.38259$
 $K_3 = 0.001491$

65

$$Q = Q_1 = Q_2 = Q_3$$
 $h_L = h_{L1} + h_{L2} + h_{L3} = 30 \text{ ft}$
 $K_1Q^2 + K_2Q^2 + K_3Q^2 = 30 \text{ ft}$
 $0.00669 \ Q^2 + 0.38259 \ Q^2 + 0.001491 \ Q^2 = 30 \text{ ft}$
 $Q = 8.76 \text{ cfs}$

Check the original estimates of friction factor (f):

$$V = Q/A$$

$$V_1 = 8.76 \text{ ft}^3/\text{s} / 3.142 \text{ ft}^2 = 2.79 \text{ ft/s}$$

$$V_2 = 8.76 \text{ ft}^3/\text{s} / 0.7854 \text{ ft}^2 = 11.15 \text{ ft/s}$$

$$V_3 = 8.76 \text{ ft}^3/\text{s} / 7.069 \text{ ft}^2 = 1.24 \text{ ft/s}$$

$$N_R = DV/v$$

$$N_R = 4.57 \times 10^5$$

$$N_R = 9.14 \times 10^5$$

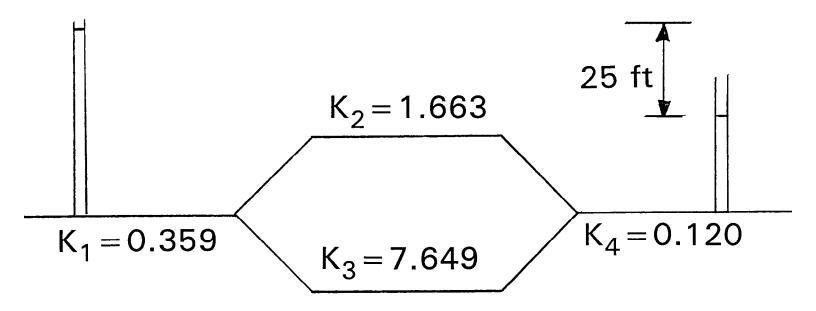
$$N_R = 3.05 \times 10^5$$

$$f = .017$$

$$f = .019$$

$$f = .017$$

Example: Compute the discharge in each pipe. Neglect minor losses.



$$h_L = KQ^2$$

$$K = f \left(\frac{L}{D}\right) \left(\frac{1}{2qA^2}\right)$$

<u>Pipe</u>	L(feet)	D(inch)	$A(ft^2)$	f_	$K=f(L/D)(1/2gA^2)$
1	3,000	16	1.396	0.020	0.359
2	3,000	12	0.785	0.022	1.663
3	2,000	8	0.349	0.020	7.649
4	1,000	16	1.396	0.020	0.120

$$\begin{array}{lll} h_{L2} &=& h_{L3} & Q_1 &=& Q_2 + Q_3 \\ K_2 Q_2^2 &=& K_3 Q_3^2 & Q_1 &=& 2.145 Q_3 + Q_3 \\ 1.663 Q_2^2 &=& 7.649 Q_3^2 & Q_1 &=& 3.145 Q_3 \\ Q_2 &=& 2.145 Q^3 & Q_3 &=& 0.318 Q_3 \end{array}$$

$$h_{L} = h_{L1} + h_{L4} + h_{L3}$$

$$25 = K_{1}Q_{1}^{2} + K_{4}Q_{4}^{2} + K_{3}Q_{3}^{2}$$

$$25 = K_{1}Q_{1}^{2} + K_{4}Q_{4}^{2} + K_{3}(0.318Q_{1})^{2}$$

$$25 = 1.252 Q_{1}^{2}$$

$$Q_{1} = 4.47 cfs$$

$$Q_4 = Q_1 = 4.47 \text{ cfs}$$

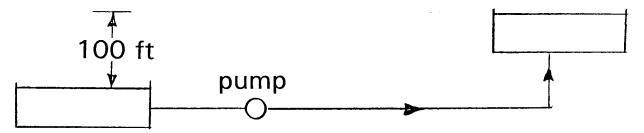
$$Q_3 = 0.318 Q_1 = 0.318 (4.47 cfs)$$

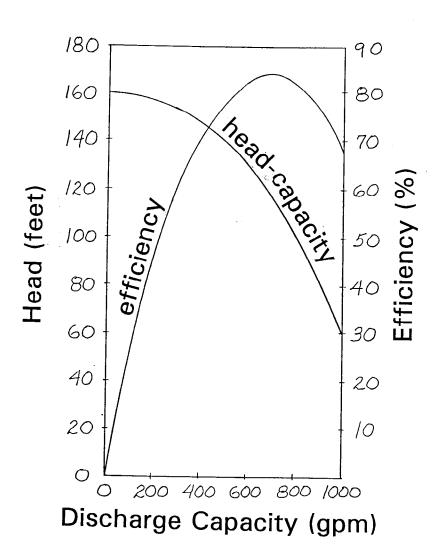
= 1.42 cfs

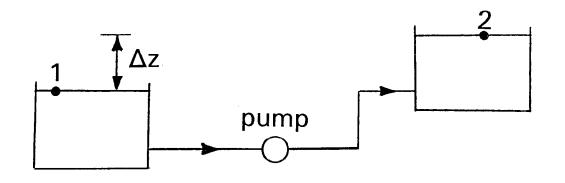
$$Q_2 = 2.145 Q_3 = 2.145 (1.42 cfs)$$

= 3.05 cfs

EXAMPLE: Two reservoirs are connected by a 850 feet long 6-inch diameter pipe (f = 0.020). A pump with the given characteristic curves is used to lift water from one reservoir to the other. Determine the discharge rate.







$$Z_{1} + \frac{P_{1}}{\gamma} + \frac{V_{1}^{2}}{2g} + h_{p} = Z_{2} + \frac{P_{2}}{\gamma} + \frac{V_{1}^{2}}{2g} + h_{L}$$

$$Z_{1} + O + O + h_{p} = Z_{2} + O + O + h_{L}$$

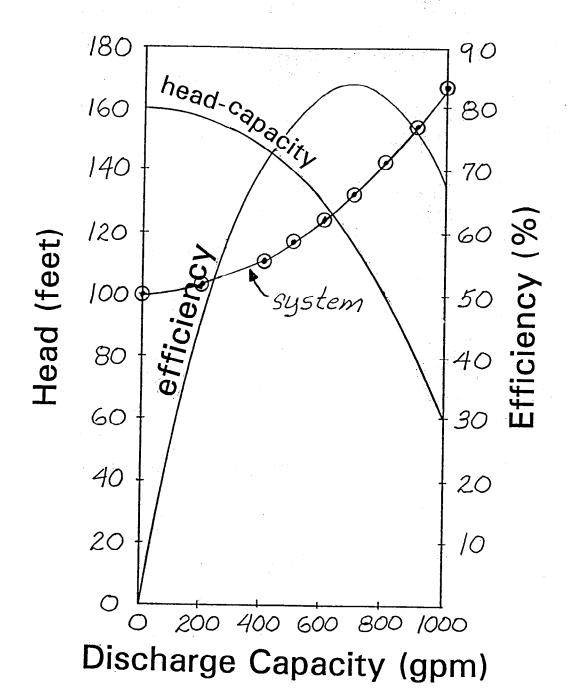
$$h_{p} = (Z_{2} - Z_{1}) + h_{L}$$

$$h_{p} = \Delta Z + h_{L}$$

System Head Curve

$$\begin{array}{l} h_p &=& \Delta z \; + \; h_L \\ \\ h_p &=& \Delta z \; + \; f(L/D) \; (Q^2/2gA^2) \\ \\ h_p &=& 100 \; + \; 0.020(850/0.5) \\ & \; (Q^2/2(32.2)(0.19635)^2) \\ \\ h_p &=& 100 \; + \; 13.694 \; Q^2 \end{array}$$

Q (gpm)	Q (cfs)	h _p (ft)
0	0	100.0
200	0.445	102.7
400	0.891	110.9
500	1.114	117.0
600	1.336	124.4
700	1.559	133.3
800	1.782	143.5
900	2.004	155.0
1000	2.227	167.9



Q = 630 gpm

$$\eta = 83 \%$$

Open Channel Flow Flow Classification

- uniform flow characteristics (discharge, velocity, depth) are constant along the length of channel
- nonuniform (varied) flow characteristics vary along the length of channel
 - gradually varied
 - rapidly varied
- steady flow characteristics are constant over time
- unsteady flow characteristics change with time

Uniform Flow

- The depth, cross-sectional area, velocity, and discharge at every section are constant.
- 2. The energy line, water surface, and channel bottom are parallel. Their slopes are equal.

normal depth (y_n) - depth at which uniform flow occurs.

Manning Formula

English Units

$$V = \frac{1.486}{n} R^{2/3} S^{1/2}$$

$$Q = \frac{1.486}{n} AR^{2/3} S^{1/2}$$

Metric Units

$$V = \frac{1}{n} R^{2/3} S^{1/2}$$

$$Q = \frac{1}{n} AR^{2/3} S^{1/2}$$

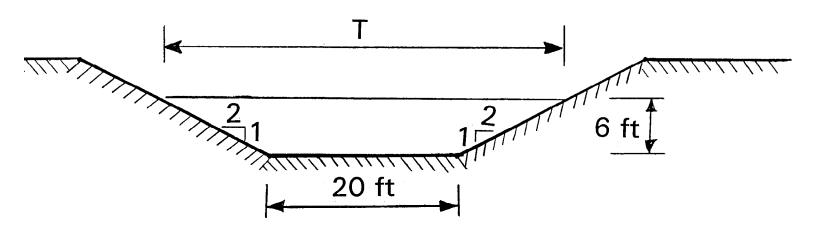
 $Q = discharge (ft^3/s, m^3/s)$

V = Q/A = velocity (ft/s, m/s) $A = cross-sectional area (ft^2, m^2)$ R = A/P = hydraulic radius (ft, m) S = slope $Z = AR^{2/3} = section factor$

n = roughness coefficient

Geometric Elements of Channel Section

example: trapezoidal section



top width
$$T = 2[2(6 \text{ ft})] + 20 \text{ ft} = 44 \text{ ft}$$

flow area

$$A = (\frac{44ft + 20ft}{2})(6ft) = 192 ft^2$$

wetted perimeter
$$P = 20 \text{ ft} + 2\sqrt{(6 \text{ ft})^2 + (12 \text{ ft})^2} = 46.8 \text{ ft}$$

hydraulic radius

$$R = A/P = 192 \text{ ft}^2/46.8 \text{ ft} = 4.10 \text{ ft}$$

hydraulic depth

$$D = A/T = 192 \text{ ft}^2 / 44 \text{ ft} = 4.36 \text{ ft}$$

Example: Compute the discharge in a concrete (n = 0.015) channel with the previous cross-section and slope of 0.10%.

$$Q = (1.486/n) AR^{2/3} S^{1/2}$$

$$Q = (1.486/0.015)(192ft^2)(4.10ft)^{2/3}(0.001)^{1/2}$$

$$Q = 1,540 \text{ ft}^3/\text{s}$$

Example: Compute the normal depth and velocity.

$$Q = 400 \text{ cfs}$$

 $S = 0.0016$
 $n = 0.025$

$$Q = \frac{1.486}{n} AR^{2/3} \frac{1/2}{S}$$

$$AR^{2/3} = \frac{QR}{1.486S^{1/2}} = \frac{400(0.025)}{1.486(0.0016)^{1/2}}$$

$$AR^{2/3} = 168.2$$

$$A = y(\frac{b+T}{2}) = y(\frac{20+20+2(2y)}{2}) = y(20+2y)$$

$$P = b+2\sqrt{y^2+(2y)^2} = 20+2\sqrt{y^2+(2y)^2}$$

$$= 20+4.472 y$$

$$R = A/p = \frac{y(20+2y)}{20+4.472 y}$$

$$AR^{2/3} = 168.2$$

$$Y(20+2Y) \left(\frac{Y(20+2Y)}{20+4.472Y} \right)^{2/3} = 168.2$$

$$by \ trial \ and \ error$$

$$Y = X_{n} = 3.36 \ ft$$

$$V = \frac{Q}{A} = \frac{Q}{Y(20+2Y)}$$

$$V = \frac{400}{3.36(20+2(3.36))}$$

$$= 4.46 \ ft/5$$