Review for Fundamentals of Engineering Exam Computers and Numerical Methods

Dr. Bill Batchelor Civil Engineering Texas A&M University

OVERVIEW

- I. Introduction
- II. Computers
- III. Numerical Methods

I. IntroductionA. FE Exam Organization

Session	Topics	No./Total	
Morning			
All	Computers	7/120	
Afternoon			
Chemical	Computers and	3/60	
	Numerical Methods		
Civil	C/NM	6/60	
Industrial	Computer	3/60	
	Computations and		
	Modeling		
Electrical	C/NM	3/60	
General	Computers	3/60	
Mechanical	C/NM	3/60	

- B. Sources for Review
 - 1. RH: National Council of Examiners for Engineering and Surveying (NCEES) Reference Handbook, January 1996
 - 2. NCEES: NCEES Sample Questions
 - 3. ERM: EIT Review Manual, Michael Lindberg, Professional Publications Inc., 1997.
 - 4. FE: Fundamentals of Engineering, Potter

II. ComputersA. Expectations (RH)

"Computer Knowledge

Examinees are expected to posses a level of computer expertise required to perform in a typical undergraduate environment. Thus only generic problems that do not require knowledge of a specific language or computer type will be required. Examinees are expected to be familiar with flow charts, pseudo code, and spread sheets (Lotus, Quatro-Pro, Excel, etc.)" (emphasis added)

B. Major Topics

- 1. Flow Charts (NCEES, ERM))
 - a) Symbols
 - (1) Terminal (beginning or end of program)

(3) process (calculations or data manipulation)

11. What operation is typically represented by the following program flow-chart symbol?

- (A) input-output
- (B) processing
- (C) storage
- (D) branching

ATH2 12/95

Solution:

Branching, comparison, and decision operations are typically represented by the diamond symbol.

Answer is D.

16. Which of the following program flowchart symbols is typically used to indicate the end of a process or program?

ATH2 12/9

Solution 16:

Termination (end of the program) is commonly represented by the symbol in choice (C).

2. Pseudo Code

- a) assignment statements (e.g. X = 3.4)
- b) INPUT (e.g. INPUT X, N)
- c) FOR/NEXT loop (e.g. FOR I = 1 TO N; NEXT I)
- d) DOWHILE/ENDDO (e.g. DOWHILE A < 3.4 ... ENDDO)

- e) DOUNTIL/ENDDO (e.g. DOUNTIL Y > 5.0... ENDO)
- f) IF/ELSE/ENDIF (e.g. IF I = 2 THEN ... ELSE ... ENDIF)

56. The program segment

calculates the sum

(A)
$$S = 1 + ZT + 2ZT + 3ZT + ... + nZT$$

(B)
$$S = 1 + ZT + (\frac{1}{2})ZT + (\frac{1}{3})ZT + \dots + (\frac{1}{n})ZT$$

(C)
$$S = 1 + Z/1 + Z^2/2 + Z^3/3 + \dots Z^n/n$$

(D)
$$S = 1 + Z/1! + Z^2/2! + Z^3/3! + ... + Z^n/n!$$

Solution

$$\frac{1}{1} = \frac{2}{2} = \frac{3}{2} = \frac{2}{2} = \frac{2}$$

	M = 42
LOOPSTART	M = M - 1
	P = INTEGER PART OF (M/2)
	IF $P > 15$, THEN GO TO
	LOOPSTART, OTHERWISE
	GO TO END
END	PRINT "DONE"

- (A) 8
- (B) 9
- (C) 10
- (D) 11

Solution 23:

The values of the variables for each iteration are

	iteration	M	P	
	1	41	20	
	2	40	20	
	3	39	19	
	4	38	19	
	5	37	18	
	6	36	18	
	7	35	17	
	8	34	17	
	9	33	16	
\bigcap	10	32	16	
\leftarrow	\rightarrow ν	31	15 -	

- 3. Spreadsheets
 - a) organization
 - (1) cells
 - (2) rows/columns
 - b) cell contents
 - (1) numbers
 - (2) labels
 - (3) expressions
 - (a) operators

(b) functions

(e.g. exp(), log(), sin(), abs())

- c) addresses
 - (1) relative address (when copied refers to cell in same relative position)
 - (2) absolute address (when copied refers to same cell)

- 55. In a spreadsheet, the number in cell A4 is set to 6. Then A5 is set to A4 + \$A\$4, where \$ indicators absolute cell address. This formula is copied into cells A6 and A7. The number shown in cell A7 is most nearly:
- (A) 12
- (B) 24
- (C) 36
- (D) 216

$$\begin{array}{ll}
A & (6) \\
5 & = A4 + 5A54 \\
6 & = A5 + 5A54 \\
7 & = A6 + 5A54 \\
7 & = A6 + 5A54 \\
\hline
ANSWER: (B) 24
\end{array}$$

17. The cells in a computer spreadsheet program are as shown.

	A	${f B}$	${f C}$	D
1	4	-1	3	0
2	3	A3+C1	-3	6
3	0.5	\mathbf{m}	33	2
4	Smith	1	B2*B3	C4

Instructions in macro-commands are scanned from left to right. What is the value of n in the following macro-commands?

$$m = 5$$
 $p = m * 2 + 6$
 $n = D4 - 3 * p * *0.5$

- (A) 4
- (B) 5.5
- (C) 10.5
- (D) 1041

ATH2 12/95

lution 17:

raluate the macro. Use the following typical precence rules:

- exponentiation before multiplication and division
- multiplication and division before addition and subtraction
- operations inside parentheses before operations outside

swer is B.

III. Numerical Methods

A. Root of Equations

1. Newton

(RH, Mathematics, p 18):

$$a_i^{j+1} = a_i^j - \frac{P(x)}{\partial P(x) / \partial x} \bigg|_{x=a_i^j}$$

$$P(x) = x^{n} + \alpha_{1}x^{n-1} + \alpha_{2}x^{n-2} + \dots + \alpha_{n-1}$$

Notes: 1) The method is shown for polynomials, but it is also applicable to other functions

- 2) There is confusion in the nomenclature used. " α " is used a as polynomial coefficient and " α " is used as an estimate of the root
- 3) The final term in the definition of the polynomial should be " α_n " rather than " α_{n-1} "

First 18e pool 01

$$P(x)=\chi^{3}-11\chi^{2}+4\chi+60=0$$

on the interval 5-20

Salution

$$\frac{dP}{d\chi}=3\chi^{2}-22\chi+4$$

$$1e+Q_{0}=\frac{5+20}{2}=12.5$$

$$Q_{1}=Q_{0}-\frac{P(q_{0})}{(4/3)x_{1}a_{0}}$$

$$=12.5-\frac{(12.5)^{3}-11(12.5)^{2}+4(12.5)\times60}{3(12.5)^{2}-22(12.5)\times4}$$

$$=10.8$$

$$Q_{1}=10.8-\frac{(0.8)^{3}-11(10.0)^{2}+4(10.8)\times60}{3(10.8)^{2}-22(10.8)\times4}$$

$$=10.1$$

$$a_3 = 10 - 1 - \frac{(10.1)^3 - 11(10.1)^2 + 4(10.1) + 60}{3(10.1)^2 - 22(10.1) + 4}$$

- 2. Bisection (ERM)
 - a) start with interval containing root: $a_1 < a_i < a_{ij}$
 - b) bisect interval: $a_b = (a_l + a_u)/2$
 - c) check sub- intervals
 - (1) if $P(a_b)^* P(a_l) < 0$, then $a_1 < a_i < a_b$
 - (2) if $P(a_b)^* P(a_u) < 0$, then $a_b < a_i < a_u$
 - d) retain sub-interval with a_i
 - e) redefine limits

$$a_u = a_b$$
 or $a_l = a_b$

f) continue until change in estimate of root (a_b) is sufficiently small.

B. Minimization with Newton's Method

(RH, Mathematics, p 18)

find a vector \mathbf{x} (\mathbf{x}_1 , \mathbf{x}_2 , ...) that will minimize the scalar function $h(\mathbf{x}) = h(x_1, x_2, ... x_n)$

$$\mathbf{x}_{K+1} = \mathbf{x}_K - \left(\frac{\partial^2 h}{\partial x^2} \Big|_{\mathbf{x} = \mathbf{x}_K} \right)^{-1} \frac{\partial h}{\partial x} \Big|_{\mathbf{x} = \mathbf{x}_K}$$

where:

$$\frac{\partial h}{\partial x} = \begin{bmatrix} \frac{\partial h}{\partial x_1} \\ \frac{\partial h}{\partial x_2} \\ \dots \\ \frac{\partial h}{\partial x_n} \end{bmatrix} \qquad \frac{\partial^2 h}{\partial x^2} = \begin{bmatrix} \frac{\partial^2 h}{\partial x_1^2} & \frac{\partial^2 h}{\partial x_1 \partial x_2} & \dots & \dots & \frac{\partial^2 h}{\partial x_1 \partial x_n} \\ \frac{\partial^2 h}{\partial x_1 \partial x_2} & \frac{\partial^2 h}{\partial x_2^2} & \dots & \dots & \frac{\partial^2 h}{\partial x_2 \partial x_n} \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial^2 h}{\partial x_1 \partial x_n} & \frac{\partial^2 h}{\partial x_2 \partial x_n} & \dots & \dots & \frac{\partial^2 h}{\partial x_n^2} \end{bmatrix}$$

Notes:

- 1) Method is applicable to solving sets of non-linear equations $(f_i(x)=0)$, where $\partial h(x)/\partial x_i = f_i(x)$.
- 2) Method is applicable to non-linear regressions, where h(x) is the sum of squared errors and x is the vector of unknown coefficients.

C. Integration (RH, Mathematics, p 18)

 $\Delta x=(b-a)/n$ n= number of segments a,b are limits of integration

1. Euler's or Forward Rectangular Rule

$$\int_{a}^{b} f(x)dx \approx \Delta x \sum_{k=0}^{n-1} f(a + k\Delta x)$$

Find Standa by Forward Beatongle X F(8) 0 10 2 12 4 b F(x) dx = DX \(\left(a + \mu \ax \right) \) = AX, Eflanker) + AX, Eflance =2(10+12)-4(7)= 72.0

2. Trapezoidal Rule

a) n=1
$$\int_{a}^{b} f(x)dx \approx \Delta x \left[\frac{f(a) + f(b)}{2} \right]$$

b) n>1
$$\int_{a}^{b} f(x)dx \approx$$

$$\frac{\Delta x}{2} \left[f(a) + 2 \sum_{k=1}^{n-1} f(a+k\Delta x) + f(b) \right]$$

Find
$$\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \int_{0}^{\infty}$$

3. Simpson's Rule/Parabolic Rule

a) n=2 (two segments)

$$\int_{a}^{b} f(x)dx \approx \left(\frac{b-a}{6}\right) \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)\right]$$
$$= \frac{\Delta x}{3} \left[f(a) + 4f(a+\Delta x) + f(b)\right]$$

b) $n \ge 4$, and be an even integer

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{3} \begin{bmatrix} f(a) + 2 \sum_{k=2,4,6,...}^{n-2} f(a+k\Delta x) \\ +4 \sum_{k=1,3,5,...}^{n-1} f(a+k\Delta x) + f(b) \end{bmatrix}$$

28. The following diagram is an offset measurements for an irregular tract.

Using Simpson's 1/3 rule, the area of the tract (m²) is most nearly:

- (A) 121.0
- (B) 129.0
- (C) 129.5
- (D) 129.9

To each segmen.

$$Cong/mt$$
 ΔX
 $Cong/mt$ $Cong/mt$
 $Cong/mt$ $Cong/mt$
 $Cong/mt$ $Cong/mt$
 $Cong/mt$ $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 $Cong/mt$
 Co

D. Ordinary Differential Equation

1. Euler

(RH, Mathematics, p 18)

to find y(t) for t = a to t = b, given:

$$\frac{dy}{dt} = f(y,t)$$
 and $y(a) = y_a$

use sequentially:

$$y[(k+1)\Delta t] \cong y(k\Delta t) + \Delta t \ f[y(k\Delta t), k\Delta t]$$

until $b = (k+1)\Delta t$

29. A chemical storage tank has a constant cross-sectional area of 90.0 square feet and a maximum liquid depth of 12.0 feet. Liquid is withdrawn from the tank through a pipe which is located 1.0 feet above the bottom of the tank. The flow rate is regulated by a valve as follows:

$$Q = 0.02 H^{1/2}$$

in which $Q = \text{Flow Rate (CFS)}$, and $H = \text{liquid height above valve (ft)}$

There is no input of chemical to the tank. Using a centered difference approximation, the length of time (minutes) required to lower the liquid level in the tank from 11.0 feet to 9.0 feet is most nearly:

- (A) 45.2
- (B) 47.4
- (C) 50.0
- (D) 106.1

A mass bolonice with construct density (Flow bolonice) is

$$\frac{dV}{dt} = Q_{10} - Q_{00}t$$

$$V = AH$$

$$Q_{00}t = 0,02 H^{1/2}$$

$$Q_{1N} = 0$$

$$\frac{dH}{dt} = \frac{0.02 H^{1/2}}{A}$$

$$\frac{dH}{dt} = \frac{-0.02 (\frac{H_1 + H_2}{2})^{1/2}}{A}$$

$$\frac{-(\frac{H_1 - H_1}{2}) A}{(0.02) (\frac{H_1 + H_2}{2})^{1/2}}$$

$$= -(\frac{9 - 11f_1}{0.02}) (\frac{911}{2})^{1/2} f_{1/2}$$

$$= 2,846 s = 47.4 min$$

$$Angust' (B) 47.4$$

2. Application to nth order ODE (mentioned in RH, Mathematics, p 18)

a) for second-order

solve:
$$\frac{\partial^2 y}{\partial t^2} + f(x, y) \frac{\partial y}{\partial t} + g(x, y) = 0$$
given:
$$y(0) = y_0, \left(\frac{\partial y}{\partial t}\right)_{t=0} = yprime_0$$

define:
$$z = \frac{\partial y}{\partial t}$$
 then: $\frac{\partial z}{\partial t} = \frac{\partial^2 y}{\partial t^2}$

substituting:
$$\frac{\partial z}{\partial t} + f(x, y)z + g(x, y) = 0$$

 $z(0) = yprime_0$

$$\frac{\partial y}{\partial t} = z$$
$$y(0) = y_0$$

b) for higher order, repeat $(1 \text{ n}^{\text{th}} \text{ order ODE} \Rightarrow \text{n } 1^{\text{st}} \text{ order ODE})$

E. Linear Least Squares Regression (RH: Industrial Engineering, p 100)

$$y = \hat{a} + \hat{b}x$$
where: $\hat{a} = \overline{y} - \hat{b}\overline{x}$

$$\hat{b} = S_{xy}/S_{xx}$$

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - (1/n) \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)$$

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - (1/n) \left(\sum_{i=1}^{n} x_i\right)^2$$

$$\overline{y} = (1/n) \left(\sum_{i=1}^{n} y_i\right)$$

$$\overline{x} = (1/n) \left(\sum_{i=1}^{n} x_i\right)$$

Linear Regression Example

Given following data for population in a town, estimate by linear regression the expected population in the year 2000.

Year	Population	
1960	23,211	
1970	29,985	
1980	36,214	
1990	43,591	

X	у	xy	x^2
1960	23,211	45,493,560	3,841,600
1970	29,985	59,070,450	3,880,900
1980	36,214	71,703,720	3,920,400
1990	43,591	86,746,090	3,960,100
7900	133,001	263,013,820	15,603,000
Sxy=	= 263,0	13,820-	=336,845
	, , ,	00)*133,001)	
Sxx=	=15,603,		=500
	(1/4)*(79	,	
y_bar=	$=(1/4)^*(1$	33,001)	=33,250.25
x_bar=	=(1/4)*(7	900)	=1975
b_hat=	=336,845	5/500	=673.69
a_hat=	=33,250.		=-1,297,288
	(673.69)		, , , , , , , , , , , , , , , , , , , ,
at x=2000			
4 007 000 (070 00) (000 00)			
at x=2000 y=-1,297,2	,	,	=50,092